首页 > 新车资讯 > 正文

新能源电驱系统标准解读与拓展:转矩控制精度 新能源汽车行业定义与分类

2024-05-15 12:30:33 | 找车网

新能源电驱系统标准解读与拓展:转矩控制精度 新能源汽车行业定义与分类很多朋友对这方面很关心,找车网整理了相关文章,供大家参考,一起来看一下吧!

本文目录一览:

新能源电驱系统标准解读与拓展:转矩控制精度 新能源汽车行业定义与分类

新能源电驱系统标准解读与拓展:电磁兼容性(二)

导语

:在解读《电动汽车安全指南2019版》中,EMC安全已经被明确纳入其中,指南中5.5.3详细规定了电驱动EMC及防护措施;在《2020版新能源汽车国家强制标准即将发布》中,也提到唯一电驱动系统EMC安全标准:GB/T36282-2018《电动汽车用驱动电机系统电磁兼容性要求和试验方法》。在《电磁兼容性(一)》中,我们已经分析了电动车以及电驱动系统的

电磁干扰

来源,我们这次还是把电驱动作为干扰源,结合EMC安全相关标准,分析上次未研究完的问题。

我们从以下几方面展开讨论:

1.电驱动系统的电磁干扰路径

2.电磁干扰频段测试

3.抑制干扰的方式

1. 电驱动系统的电磁干扰耦合路径

由于电驱动系统内辐射干扰主要是由于传导电磁干扰引起的,而且可以通过添加屏蔽等物理手段进行抑制,而传导干扰沿着导体进行传播,相比辐射干扰更难抑制。

这里我们谨遵毛爷爷的指导,抓主要矛盾,只分析传导干扰。传导干扰是通过所在系统中各种导体传输线,以电流、电压形式进行耦合传播的干扰。

在前面文章中已经提过电驱动中存在差模干扰和共模干扰(

传送门

:《新能源电驱系统标准解读与拓展:电磁兼容性(一)》),在分析干扰路径前,我们先要明白什么是差模干扰?什么是共模干扰?

差模干扰(Differential-mode):干扰电压存在于信号线及其回线(一般称为信号地线)之间,干扰电流回路则是在导线与参考物体构成的回路中流动。

共模干扰(Common-mode):干扰电压在信号线及其回线(一般称为信号地线)上的幅度相同,这里的电压以附近任何一个物体(大地、金属机箱、参考地线板等)为参考电位,干扰电流回路则是在导线与参考物体构成的回路中流动。

关于DM和CM,下图表示的很清楚了,供参考:

简单来说,差模干扰时信号线到信号线的回路干扰,共模干扰是信号线到地的回路干扰。

01 电驱动系统的差模干扰路径

IGBT开通关断期间感应出瞬态脉冲电压,在

相线

与电源线组成回路中产生电流,形成差模干扰回路。差模传导电磁干扰耦合路径示意图如下所示:

传播路径1,通过耦合到母线最终流回到电池;传播路径2,是产生的较高频的电流通过电机内部产生尖峰电压。电流1、电流2的和,就是

逆变器

产生的总体差模干扰电流。

02 电驱动系统的共模干扰路径

共模传导电磁干扰耦合路径示意图如下所示:

路径1,为开关器件IGBT处形成的干扰,在三相逆变桥臂上

中性点

的电位是规律性阶跃变化的,IGBT与散热器之间存在

杂散电容找车网

,在IGBT开通关断的瞬间,产生的高频du/dt会通过其上

寄生电容

充放电,进而产生共模电流,最终通过输入

电缆线

回到逆变器形成共模干扰回路。

同时,研究指出,电机的定子绕组和电机机壳之间,也存在着较大的寄生电容,存在于电池、电机中性点上的共模电压也会通过上述寄生电容形成共模EMI电流,并通过高压线缆最终回到逆变器形成路径2。

电流1、电流2的和,就是逆变器产生的总体共模干扰电流。

以上,我们完成了电驱动电磁干扰源和干扰路径的分析,那么下一步看看敏感器件有哪些。我们只有知道了干扰频段的大小是多少,才能指导干扰到哪些器件,接下来我们看看如何测试干扰频段。

2. 电磁干扰频段的测试

传导干扰和辐射干扰如何进行测试?不同频段的

振幅

是多少?会不会影响到敏感期间呢?

?《GB/T 36282》

带着这些问题,我们看一下专门针对电驱动EMC的GB标准——《GB∕T 36282-2018 电动汽车用驱动电机系统电磁兼容性要求和试验方法》,带着满怀激动的心情点开了标准页面,BUT,GB/T36282-2018标准目录是这个样子,说好的传导发射呢。。。。。。。

??《电动汽车安全指南》与《GB/T 18655》

不怕,我们再看《电动汽车安全指南2019版》涉及的电驱动EMC安全标准,在5.5.3.1中规定:

这下就没问题了,《GB/T36282-2018》要与标准《GB/T 18655-2018车辆、船和内燃机无线电骚扰特性用于保护车载接收机的限值和测量方法》相结合去看,而且,《GB/T 18655-2018》的标题提到了敏感器件:车载接收机。车载接收机多种多样,工作的频段范围非常广,标准中是怎么规定限值的呢?

??传导电磁干扰测试

《GB/T 18655-2018》涉及零部件传导发射测试的章节如下图,共有两种测试方法:电压法与电流探头法。

测试方法以及限值在标准中写得很详细,喜欢童鞋可详细研读一下,这里不再过多介绍,我们直接上张测试照片:

传导电磁干扰测试平台,主要由电源、人工电源网络、接收器、电源钳、直流高压线缆、电驱动(或电机+逆变器+交流线缆)、测功机等部分组成。接收器可以通过LISN测得系统产生的传导电压,也可结合电流测得直流动力线缆单根电流和共模电流。

电机空载和带载分别测试正极电压传导,借用一下某大神的结果(图片来源于网络,若有侵权,请联系作者):

其中规定限值的参考标准为CISPR25,这是上述标准《GB/T 18655》英文版本,可以看出,很多频段都严重超标,需要找到响应的措施,抑制干扰。

(关于电磁干扰相关标准,后续会专题统一总结,敬请期待)

?辐射电磁干扰测试

辐射干扰途径因可以通过添加屏蔽等物理手段进行抑制,所以不做重点讲解,但是测试的环节不能少,电驱动系统辐射干扰如何测量呢?

这次先看《GB/T 18655-2018》的目录,标准中介绍了三种方法:ALSE(装有

吸波材料

的屏蔽室)法、TEM小室法、带状线法。ALSE法介绍非常详细,并对不同频率推荐使用了不同天线:

再看下《GB/T36282-2018》辐射干扰测:

测试方法出自《GB/T 18655-2010》,而且在30MHz~1000MHz只说明了用双锥天线测试(#我要你有何用。。。#)测试步骤不再详述,试验台与传导发射试验类似,多增加了接收天线,这里只针对30MHz-200MHz的测试,上图一张:

同样,测试完成的频谱图与标准中的限值相比较,找到不达标的频谱段,采取措施进行抑制。

3. 抑制干扰的方式

抑制电磁干扰是相对专业的问题,也由于篇幅的原因,这里简单说一下:

通过第1节的电磁干扰分析,可以看出,差模干扰电压是影响系统性能的最主要原因,因为差模干扰回路都是在驱动系统内形成的。通过调制开关通断时占空比的大小等方法可以对差模干扰路径 1 进行抑制。通过添加滤波器、添加屏蔽层等方法可以对流经电机内部的耦合差模干扰路径 2 进行抑制。

4. 展望

本篇主要分析了电驱动的电磁传导干扰的耦合路径和,依据GB/T 18655-2018介绍了传导发射和辐射发射的试验方法(GB/T36282-2018貌似不怎么靠谱),最后简单说了一下的电磁干扰的抑制措施。后续会对电驱动的抗干扰能力进行分析与相关测试标准的解读。

本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。

新能源电驱系统标准解读与拓展:转矩控制精度 新能源汽车行业定义与分类

新能源电驱系统标准解读与拓展:转矩控制精度

导语:纯电动汽车动力总成中的转矩控制精度,是整车关注的关键指标之一,直接影响了整车的驾驶性、能耗优化、以及转矩突变时的响应时间。究竟什么是转矩精度?如何测试?转矩精度和系统哪些参数相关?又要如何在设计开发过程中将其限制在一个可接受的范围内?这些问题是我们关注的焦点。

关于转矩控制精度,分三部分解读:

1. 什么是转矩控制精度?

2. 转矩控制精度的测试方法

3. 转矩精度的估算

1. 什么是转矩控制精度

在《GB/T 18488.1-2015-电动汽车用电机及其控制器第1部分-技术条件》3.11中给出了转矩控制精度的定义:

解读:对于电动车电驱动系统,输出转矩范围大,精度需要分情况定义,标准中给出了偏差与百分比两种不同的定义方式,一般在低转矩段,采用转矩偏差定义,在高转矩段,采用百分比定义,如输出转矩0~100Nm,转矩控制精度±5Nm,大于100Nm,转矩控制精度±5%。

2. 转矩控制精度测试方法

《GB/T 18488.2-2015-电动汽车用电机及其控制器第2部分-实验方法》7.3.2 中已经具体地写明了转矩精度测试的方法:

解读: 标准中试验步骤已经写的很详细,BUT,从标出的重点中还可以看出,电机的运行温度与转速还未明确。而电控的标定过程,会在某特定温度与转速下进行,如定子70°C,转速3500rpm。在此条件下测试的转矩精度相对较高,然而若偏离了此温度或者转速,控制参数需根据电机温度模型自适应调整,温度模型的好坏对转矩精度还是有很大影响的,笔者认为测试中对转速与温度采样点也应有具体的规定。

3. 转矩精度估算

电动车电驱动中很难集成高精度的转矩传感器,所以大多电驱动生产厂商用电流电压及转速传感器以及电机设计的相关参数估算电机输出转矩,比如以下计算模型,分别是 转矩电流计算模型 和 转矩能量计算模型 :

其中:

? f1,f2:计算函数

? T_estimate:估算转矩

? n:电机转速

? id,iq:d轴与q轴电流

? φd, φq:d轴与q轴磁链

? ud,uq:d轴与q轴电压

? T_friction:电机摩擦阻力

? T_iron:电机铁耗转矩损失

? Ploss_ac,dc:交流和直流母线损耗

我们知道了影响转矩计算的参数,我们再看下 电驱动系统的转矩控制图 ,看看哪部分对这些参数产生影响:

对照控制图,依据转矩估计的公式,我们可以分析出影响转矩精度计算的因素,大致可以分为三类:

i. 延迟:控制器计算延迟、直流电压获取延迟、调制延迟、电流传感器延迟

ii. 传感器精度:电流传感器、旋变

iii.电机参数,包括:

1)电机磁链偏差

2)电机磁链随温度变化的改变

3)定子电阻偏差

4)摩擦损耗偏差

5)铁耗的偏差

当然,考虑因素的越多越好,可以对每一点定量分析,如电流传感器精度±2%,旋变角度误差0.7°等,再依据蒙特卡洛法,可以对系统每个工作点的静态转矩精度做分析,这里不做详细展开,想详细了解的读者可以留言。

转矩控制精度的分析,可以对电驱动系统的性能提前预言,是初期设计以及系统改进阶段必要的步骤,这方面的测试标准也要随着控制技术的提高不断改进。

写在最后:关于”转矩精度估算“这一块,除了文中所示的电流和能量计算模型外,根据功能安全等级的不同,其计算模型和变量参数也有所侧重,这里仅示意说明,感兴趣朋友的可留言交流。

关于”转矩精度对整车性能的影响分析”这一块,涉及到控制策略和标定流程,了解有限,期待能得到同行专家的点拨。

本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。

新能源电驱系统标准解读与拓展:转矩控制精度 新能源汽车行业定义与分类

新能源汽车行业定义与分类

新能源汽车行业定义与分类

行业定义:

根据《中华人民共和国国家标准GB/T 47542017》中的《国民经济行业分类》,相关行业分类为新能源车整车制造 (C3612) ,行业说明为“指采用新型动力系统,完全或主要依靠新型能源驱动的汽车,包括插电式混合动力 (含增程式) 汽车、纯电动汽车和燃料电池电动汽车。

行业分类:

根据用途分类,与传统汽车一样,新能源汽车可分为乘用车和商用车两大类。乘用车又可分为四类车型:基本型乘用车(轿车)、多功能车(MPV)、运动型多用途车(SUV)、专用乘用车和交叉型乘用车。商用车可分为两类车型:客车和货车。

动力系统:

可分为纯电动车(BEV),混合动力电动车 (HEV) 和燃料电池电动车(FCEV)三大类。严格来说混合动力电动车中只有插电式混合动力电动车 (PHEV) 和增程式混合动力电动车(EREV) 属于新能源汽车,增程式混合动力电动车也可认为是插电式混合动力电动车的一种。

以上就是找车网为大家带来的新能源电驱系统标准解读与拓展:转矩控制精度 新能源汽车行业定义与分类,希望能帮助到大家!

免责声明:文章内容来自网络,如有侵权请及时联系删除。
与“新能源电驱系统标准解读与拓展:转矩控制精度 新能源汽车行业定义与分类”相关推荐